Implementing Software Development Guide-
lines in a Medical Informatics Research Project

L. IBler", C. Spreckelsen?, C. WeBel?

Nnstitute for Medical Informatics, Statistics and Epidemiology (IMISE), University of Leipzig,

Leipzig, Germany

2Department of Medical Informatics, RWTH Aachen University, Aachen, Germany

Summary

Objectives: Due to the non-commercial, research-
oriented context, software in medical informatics
research projects is often developed by researchers as a
proof-of-concept without applying structured software
development process models. A guideline for software
development can bring sufficient structure to the
development process while avoiding the complexity of
industry-standard methods.

Methods: We adapted the common evidence-based
quideline development process from medicine to huild
a guideline for software development in our medical
informatics feaching and research project.

Results: Our guideline development used the six steps
of problem identification, first proposal, review, revi-
sion, gaining consensus and periodic guideline review.
Since the developers had taken part in guideline devel-
opment, our guideline clearly states the consensus of
the development team over critical topics. The guideline
improved the quality of our source code in structure and
understandability.

Conclusions: A software development guideline that is
developed following a consensus panel approach is a
good instrument for basic software quality assurance in
domains where complex, industry-standard software
development methods cannot be applied. This is
especially the case in non-commercial, research-
oriented medical informatics projects where mainly
non-software engineers like students do the develop-
ment work.

Keywords
Software engineering, guidelines, medical informatics

Methods Inf Med 2007; 46: 641—645
doi:10.3414/ME0428

Received: May 16, 2006; accepted: October 5, 2006

1. Introduction

The main focus of the CERES project at the
Department for Medical Informatics at the
RWTH Aachen University is the devel-
opment of a web-based information portal
on hospitals [1]. The core of the CERES
project is an object-oriented database con-
taining structural data about hospitals like
the number of departments and the special
areas of surgery. The information is pre-
sented through different front-ends over the
world wide web, including a textual and a
graphical presentation of data about hospi-
tals. The team behind CERES is multidis-
ciplinary. Members are both students and
researchers from computer science, medi-
cine, economics and public health. CERES
as a teaching project implements project-
based learning in computer science, en-
riched by a multidisciplinary and continued
setting [2].

In the year 2005, after two years of
project work the CERES project resulted in
several student research projects and diplo-
ma theses on the one hand and a set of soft-
ware modules on the other. Almost every
software module was developed in the con-
text of a thesis preparation. The scientific
part of these theses was done according to
the common scientific practice, but the soft-
ware was developed according to the per-
sonal skill level of the respective student.
This lead to source code maintenance
problems, documentation at the wrong
place, missing, or bad, and unstable soft-
ware resulting from erroneous code.

From these experiences the need for a
clearly structured and understandable de-
velopment procedure arose. We wanted this
procedure to cover implementation, inte-
gration, testing and evaluation of the devel-
oped software; but foremost, it should be
helpful, understandable and easy to use [3].

641
|

© 2007 Schattouer GmbH

By this it should pay special attention to the
work practices in the project [4], namely to
the fact that the development team consists
mainly of students which stay relatively
short in the project. Common industrial-
standard process models for software devel-
opment like the Rational Unified Process
(RUP) [5] are too heavyweight for appli-
cation under these circumstances.

Instead, we claim that a software devel-
opment guideline is an ideal quality man-
agement tool for use in a medical in-
formatics teaching and research project.
Such tools are needed especially in medical
informatics [6]. Several questions have to be
answered:

1) Which steps lead to the implementation
of a guideline for software development?

2) What could be the basis for such a guide-
line?

3) What are the building blocks for such a
guideline?

4) Is the guideline approach useful for im-
proving the software quality?

In this paper, we answer these questions by
presenting how to apply our guideline-
based approach for software development in
research projects to the domain of medical
informatics.

2. Guidelines in Medical
Informatics

Guidelines are systematically developed
statements to inform their user about a pro-
cess in specific circumstances [8]. In medi-
cine, guideline development follows a clear
and comprehensible process and is scien-
tifically founded. A group of experts as-
sesses evidence, defines the guidelines in a
cyclic process, and eventually gains consen-

Methods Inf Med 6/2007

642
|

Bler et al.

[dentification
of the problem

\ 4

A 4

First proposal

A 4

> Review

A 4

Revision

\ 4
Final
consensus
and passing

A
Periodic
review and
update

Fig. T The six steps to develop a software development
guideline

sus [9]. The guidelines are then imple-
mented in a specific setting by adapting
them to the setting’s constraints [10, 11].
Most crucial, guidelines must be reviewed
and updated after a defined period, to keep
the consensus alive and the underlying evi-
dence up-to-date 10, 12].

In software engineering and medical in-
formatics there are recommendations for,
for instance, source code quality [13],
source code layout [14] and other special as-
pects of the developed software [15]. It is
also common to adapt a recommendation to
a specific setting. Using a process model for
software development like the Rational Uni-
fied Process (RUP) [5] or the V-Model [16]
as a template is an example, and the adap-

Methods Inf Med 6/2007

tation of general reference models to a spe-
cific domain [17] is another.

However, this adaptation of standards is
usually not accompanied by neither a sys-
tematic process of gaining consensus nor
periodic reviews of this consensus. But the
consensus of a project team about the appli-
cated rules is crucial, especially in domains
with high fluctuation of developers and
therefore the permanent need to explain and
defend established policies against new
team members.

3. A Process Model

for Implementation and
Maintenance of Software
Development Guidelines

Our proposed process for implementing a
guideline consists of moderated discussions
and the work of a distinct author who is re-
sponsible for the guidelines. For each topic
or criterion mentioned in a chosen basic
standard, goals have to be identified. From
the goals, rules which state how to achieve
these goals have to be derived.

The six steps of the process are as follows
(refer to Fig. 1 for a graphical representation):
1) Identification of the problem, the needs

and possible solutions and assignment of
the responsible author. The research
team decides to implement software de-
velopment guidelines during a moder-
ated focus group session.

2) First proposal of the guidelines. The re-
sponsible author writes a first draft after
literature research on existing standards
and guidelines, and derives goals and rules
which can serve as a basis and pattern.

3) Review. Every team member edits the
proposal and the team identifies the
necessary adaptation in a consensus
panel session. The consensus based upon
professional experience is crucial for the
progress and success of the implemen-
tation process.

4) Revision. The author adapts the guide-
lines according to the comments of the
team members, which could involve
revision, dropping and invention of both
goals and rules.

5) Final consensus and passing of the
guidelines. Iteration of steps 3 and 4 until
a final consensus is gained.

6) Periodic review and update. The guide-
lines must be reviewed after certain peri-
ods to assure that they are still clear and
applicable to the project. We chose six
months as a review period, with an option
to review the guidelines on demand if the
team identifies relevant topics. This cor-
responds to a formative evaluation of the
feasibility of the guidelines.

We recommend step 1 to be performed as
focus group to identify problems, needs and
possible solutions [18, 19]. For the review
and gaining consensus on the guidelines in
steps 3 and 5 we recommend the approach
of a consensus panel. Both methods were
developed in social sciences as qualitative
research methods and have served well for
guideline development [21].

4. The CERES Software Quality
Guidelines

The guideline development in CERES took
three months. The team uses the guidelines
since August, 2004 and performed three
regular reviews after six, 12 and 18 months
of use, respectively. Following the IEEE
610.12-1990 standard [18] as a basis, we de-
veloped guidelines with the main target of
software quality. These software quality
guidelines cover the topics from this
standard, namely correctness, reliability,
efficiency, integrity, usability, maintain-
ability, flexibility, portability, testability,
reusability and interoperability of software
[18]. Part 1 of the ISO/IEC 9126 standard
defines another set of similar and also
useful criteria [7].

To the original topics we added the two
topics documentedness and copyright and
licenses during the consensus process (see
Section 3) to fit our individual needs. An
overview over the guidelines is given in
Table 1. In this section we describe as
examples three rules of the guidelines®.

@ For space reasons, we cannot discuss all guideline

rules in detail. The full text of the guidelines can
be obtained from [26].

4.1 Example: Correctness

The IEEE 610.12-1990 standard defines a
software as correct if and only if it fulfills a
written specification [18]. From this cri-
terion we derived the goal to have a written
specification for a software module to be
able to test it. The following rule obliges the
developers to write a requirements specifi-
cation with standardized contents:

e The author MUST create a requirements
specification document for the software.
The requirements specification docu-
ment (“specification” for short) MUST
list the goals, the functional require-
ments and the nonfunctional require-
ments. The specification MAY (for ap-
plications that are intended to interact
with end-users: SHOULD) contain a de-
scription of several scenarios in which
the software is used in the intended
manner to solve problems.

If a developer follows this rule, every piece
of software has a corresponding require-
ments specification. The software can be
tested against the specification and then de-
clared as correct or not.

This rule is a typical example for a guide-
line rule®. It gives a clear instruction to the
developer, and it specifies what to do in an
exceptional case (indicated by the MAY
keyword). Nevertheless, the presented rule
leaves out methodical aspects of require-
ments engineering, which should be added
especially for the development of clinical
systems [23].

4.2 Example: Documentedness

New members of the CERES project team
often had problems getting familiar with the
existing bunch of software source code in
the project. With well-written, sound, up-to-
date, understandable, and easily accessible
documentation, getting familiar is easier.

b There are two types of rules: mandatory ones and

truly optional ones. We indicate the type of the
rule by the keywords MUST and SHOULD (and
sometimes MAY) (in capitals), which are defined
in the internet standards document RFC 2119
[22].

Table 1

643
. |

Implementing Software Development Guidelines

Overview over the CERES software quality guidelines. For each objective/goal, there is a rule in the guidelines. The

goals for rules presented in the article are emphasized by italics.

Topic Objectives/Goals
Correctness requirements specification; discussion of the requirements with the team; rational for specifica-
(4 rules) tion changes; software acceptance test

Reliability and efficiency
(3 rules)

defined list of non-functional requirements; provision of a mechanism to measure the non-func-
tional requirements; transfer only needed data

Integrity one main class for all servlets; using the project-internal database API for database access

(2 rules)

Usability (1 rule) application of the CERES web style guide

Copyright and Licenses documentation which third-party software with licenses is used; use only free or licensed software
(4 rules)

Documentedness Javadoc for identifiers; method explanations in Javadoc; short tutorial for every module list of
(6 rules) required third-party libraries for every module; list of resources in access for every module
Maintainability separation of program logic and input/output; fest cases for every module; package naming con-
(8 rules) vention; separation of class files/data files; application of the Sun’s Java Coding Conventions;

modular programming; use of Java’s mechanisms for maintainability and reusability

Flexibility (1 rule)

documentation of the software’s infended purpose

Portability
(5 rules)

Java version to use; serviet APl version fo use; browser requirements; avoidance of absolute
pathnames; avoidance of hard-coded URLs

Testability (2 rules)

avoidance of a “do everything” method

Interoperability
(3 rules)

documentation of the consumed and produced data and the used protocols; specification of inter-
faces and usage of XML formats for data exchange; documentation of newly invented protocols

We call this feature ‘documentedness’, and
we think it i a good idea to achieve docu-
mentedness in every project.

The easiest way to achieve documented-
ness in Java (the programming language
used in CERES) is to use Java’s built-in tool
‘Javadoc’. The following is how we formu-
lated this as a rule:

e Every identifier declared as public or
protected MUST be documented with a
Javadoc comment. Every complex method,
every class, and every package MUST be
documented with a Javadoc comment
that contains at least an introducing ex-
planation of the complex functionality.

But Javadoc has to be accompanied with
some documentation outside the source
code, as it turned out during a periodic
guideline revision. This is stated by the fol-
lowing rule:

e Every software MUST be accompanied
by a short tutorial that explains the main
program logic in order to support pro-
grammers that maintain or extend the
software in the future. This tutorial
MUST contain at least one class diagram

(formulated in the Unified Modeling
Language) that outlines the software
architecture.

5. Experiences from Working
with the Guidelines

The CERES project started in April, 2002.
We introduced the guidelines to the project
in August, 2004. Before the guideline intro-
duction, software was developed in seven
student research projects. With the guide-
lines in effect, software was developed in
four diploma theses and two student re-
search projects. The students stayed in the
project from six to about twelve months.
Until April, 2006, the guidelines were re-
vised three times according to the defined
interval of six months. Our original guide-
lines consisted of 33 rules. In the three peri-
odic revisions 16 rules were revised (which
usually meant that they were re-formulated
to be more precise), eight new rules were
added, and three rules were removed. Dur-
ing this period, the main author of the guide-

Methods Inf Med 6/2007

644
|

Bler et al.

lines (which is the first author of this article)
left the project, and another team member
took over the responsibility for the guide-
lines without problems.

As an overall result we observed that the
way the student developers deal with prob-
lems occurring during the software develop-
ment changed. Instead of asking on every
problem, they checked problems against the
guidelines first and brought them to dis-
cussion only if the guidelines could not un-
ambiguously solve them. In several cases,
developers new to the project suggested new
rules during the next periodic revision to
clarify the ambiguities they had initially dis-
covered.

It is worth noting that the simple exist-
ence of the guidelines significantly reduced
the amount of lengthy discussions between
the developers about which architectural
paradigm to use, whether to reengineer old
code, and where to place the software docu-
mentation. These topics were now discussed
once and then fixed in the guidelines.

An interesting effect of the guidelines
was that whenever a developer encountered
a piece of old code that violates a guideline
rule he voluntarily tried to fix this. The de-
velopers were highly motivated not to com-
bine old code of poor quality with the new,
high-quality code.

6. Discussion

Summarizing our results of the devel-
opment and implementation of a software
development guideline (which focuses
mainly on aspects of software quality), we
can answer the questions from Section 1 as
follows:

1) Guidelines for software development
should reflect the consensus of the devel-
opment team, and keep this consensus
alive. We developed a process model for
implementing and reviewing guidelines.

2) Standards from software development
should be used as a basis for guideline
development.

3) Following our proposed process model
leads to a software development guide-
line that is helpful, understandable and
easy to use, and gives advice on how to
keep the guideline up to date.

Methods Inf Med 6/2007

4) From our observations with the guide-
lines in effect we found that a software
development guideline improves the
quality of the source code in structure
and understandability.

Compared to mature, industry-standard
software-development process models like
the Rational Unified Process (RUP) [5] and
the V-Model [16], a guideline is lightweight
and easy to understand but nonetheless ef-
fective. This is a great advantage in environ-
ments with high fluctuation (like a teaching
project) of developers from multiple disci-
plines (like often in medical informatics).

Our six steps to develop and implement a
software development guideline together
with their periodic revision ensure that the
guidelines reflect the consensus of all devel-
opers. This (admittedly) considerable dis-
cussion effort leads to a high acceptance of
the guidelines [10].

Gaining consensus and formulating it
explicitely is also helpful when the develop-
ment is completed. Software development
guidelines state a number of assumptions
about the development and implementation
process and the software’s future use. An
explicit formulation of these assumptions
can be helpful when applying software to a
specific work environment [24] and when
moving the software from one context to
another [25].

7. Conclusion and Outlook

We regard a guideline for software develop-
ment as an appropriate and recommendable
instrument to ensure high software quality
both encountering scientific standards and
respecting the special environment of a
teaching and research project. We will
proceed in the continuous maintenance of
the guidelines and evaluate formatively
whether the consensus panel approach re-
mains feasible.

We expect that our guideline approach is
also applicable to other domains in medical
informatics, one of which is modeling. Es-
pecially as a quality assurance instrument, it
should be helpful to gain consensus about
the quality criteria that apply to a developed
model, to derive a modeling guideline from

these criteria, and to carefully review both
criteria and guidelines in defined intervals.

In future, guideline development could
be supported by a set of ‘rule templates’ or
‘general recommendations’ derived from
existing standards and guidelines as a con-
sensus for specific areas in medical in-
formatics. Such general recommendations
could help to achieve comparable quality of
development work in these areas. Our cur-
rent guideline could serve as a starting point
for this.

Acknowledgments

The authors thank the CERES project members. Their
cooperation was and is crucial for the development,
maintenance and use of the guidelines. The authors
also thank Prof. Dr. Alfred Winter, Leipzig, and the
anonymous reviewers for their helpful comments on
this paper.

The work presented in this article was done at the In-
stitute for Medical Informatics at the RWTH Aachen
University. During this time, the main author moved
to the Institute for Medical Informatics, Statistics and
Epidemiology of the University of Leipzig.

References

1. WeBlel C, Spreckelsen C, IBler L, Karakas G,
Méller W, Palm S, et al. Die Qualitétsberichte der
deutschen Krankenhduser im Internet ab 2005:
Erstellung mit Hilfe des objektorientierten Meta-
modells fiir Krankenhéuser MINERVA. In: Am-
menwerth E, Gaus W, Haux R, Lovis C, Pfeiffer
KP, Tilg B, et al., editors. Abstracts der 49. Jahres-
tagung der GMDS, 26.-30. September 2004, Inns-
bruck. Niebill: videel; 2004. pp 144-146. (In Ger-
man.)

2.Pape B, Bleek WG, Jackewitz I, Janneck M.
Requirements for Project-Based Learning —
CommSy as an Exemplary Approach. In: Sprague
RH, editor. Proceedings of the 35th Annual
Hawaii International Conference on System
Sciences. Los Alamitos; 2002.

3. Kuhn KA, Lenz R, Elstner T, Siegele H, Moll R.
Experiences with a generator tool for building
clinical application modules. Methods Inf Med
2003; 42 (1): 37-44.

4. Nykdnen P, Karimaa E. Success and Failure Fac-
tors in the Regional Health Information System
Design Process — Results from a Constructive
Evaluation Study. Methods Inf Med 2006; 45:
85-89.

5. Jacobson I, Booch G, Rumbaugh J. The Unified
Software Development Process. Addison-Wesley;
1999.

6. Ammenwerth E, Shaw NT. Bad Health In-
formatics Can Kill - Is Evaluation the Answer?
Methods Inf Med 2005; 44: 1-3.

7. International Organization for Standardization.
ISO/IEC 9126 Software engineering — Product
quality — Part 1: Quality model; 2001.

8. Field MJ, Lohr KN, editors. Clinical practice
guidelines: directions for a new program. Wash-
ington: National Academy Press; 1990.

9. Shekelle PG, Woolf SH, Eccles M, Grimshaw J.
Clinical guidelines: Developing guidelines. Brit-
ish Medical Journal. 1999;318:593-6.

10. Feder G, Eccles M, Grol R, Griffiths C, Grimshaw
J. Clinical guidelines: Using clinical guidelines.
British Medical Journal 1999; 318: 728-730.

11. Michie S, Johnston M. Changing clinical be-
haviour by making guidelines specific. British
Medical Journal 2004; 328: 343-345.

12. Council of Europe. Developing a methodology for
drawing up guidelines on best medical practices
(Recommendation (2001) and explanatory mem-
orandum). Council of Europe; 2002.

13. Greif N, Schrepf H. Information Technology
Guidelines for Software Development : Guideline
for Programming in C. Physikalisch-Technische
Bundesanstalt. Bonn; 2002.

14. Sun Microsystems. Code Conventions for the Java
Programming Language : Revised April 20, 1999.
Sun Microsystems; 1999.

15. Chisholm W, Vanderheiden G, Jacobs I, editors.
Web Content Accessibility Guidelines 1.0. World
Wide Web Consortium; 1999.

16. Federal Republic of Germany. V-Model 97, Life-
cycle Process Model — Developing Standard for
IT Systems of the Federal Republic of Germany:
General Directive No. 250. Federal Republic of
Germany; 1997.

17. Averill E. Reference models and standards. Stan-
dardView 1994; 2 (2): 96-109.

18. Institute of Electrical and Electronics Engineers.
IEEE Standard Glossary of Software Engineering
Terminology. ANSI/IEEE Standard 610.12-1990;
1990.

19. McAlearney AS, Schweikhart SB, Medow MA.
Doctors’ experience with handheld computers in
clinical practice: qualitative study. British Medi-
cal Journal 2004; 328 (7449): 1162.

20. Smith AC. Design and Conduct of Subjectivist
Studies. In: Friedman C, Wyatt J, editors. Evalu-
ation Methods in Medical Informatics. Springer;
1997. pp 223-253.

21. Coreil J. Group interview methods in community
health research. Med Anthropol 1995; 16:
193-210.

22. Bradner S. Request for Comments: 2119. Key
words for use in RFCs to Indicate Requirement
Levels. Network Working Group; 1997.

645
. |

Implementing Software Development Guidelines

23. Reddy M, Pratt W, Dourish P, Shabot MM. Socio-
technical Requirements Analysis for Clinical Sys-
tems. Methods Inf Med 2003; 42: 437-444.

24. Hartswood MIJ, Procter RN, Rouchy P, Rounce-
field M, Slack R, Voss A. Working IT Out in Medi-
cal Practice: IT Systems Design and Development
as Co-Realisation. Methods Inf Med 2003; 42:
392-397.

25. Kaplan B, Shaw NT. Future Directions in Evalu-
ation Research: People, Organizational, and So-
cial Issues. Methods Inf Med 2004; 43: 215-231.

26. IBler L, Becker N, Spreckelsen C, Weflel C. The
CERES Project — CERES Software Development
Guidelines. Aachener Schriften zur Medizin-
ischen Informatik 2007; 1. Obtainable via http://
publikationen.med-informatik.ukaachen.de/.

Correspondence to:

Lutz IBler

University of Leipzig

Institute for Medical Informatics, Statistics and Epidemiology
(IMISE)

Haerfelstr. 16-18

04107 Leipzig

Germany

E-mail: lutz.issler@imise.uni-leipzig.de

Methods Inf Med 6/2007

